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Abstract

Keywords:

The self-sustaining process is a fundamental and generic three-dimensional non-
linear process in shear flows. It is responsible for the existence of non-trivial
traveling wave and time-periodic states. These states come in pairs, an upper
branch and a lower branch. The limited data available to date suggest that the
upper branch states provide a good first approximation to the statistics of tur-
bulent flows. The upper branches may thus be understood as the “backbone”
of the turbulent attractor while the lower branches might form the backbone of
the boundary separating the basin of attraction of the laminar state from that of
the turbulent state. Evidence is presented that the lower branch states tend to
purely streaky flows, in which the streamwise velocity has an essential spanwise
modulation, as the Reynolds number R tends to infinity. The streamwise rolls
sustaining the streaks and the streamwise undulation sustaining the rolls, both
scale like R=! in amplitude, just enough to overcome viscous dissipation. It is
argued that this scaling is directly related to the observed R~ transition thresh-
old. These results also indicate that the exact coherent structures never bifurcate
from the laminar flow, not even at infinity. The scale of the key elements, streaks,
rolls and streamwise undulation, remain of the order of the channel size. How-
ever, the higher x-harmonics show a slower decay with R than naively expected.
The results indicate the presence of a warped critical layer.

wall-bounded turbulence, coherent structures, self-sustaining process, transition
threshold, critical layers.

1. INTRODUCTION

Recent pipe flow experiments by Hof et al. (2003) provide clear evidence that
the transition threshold, i.e. the smallest perturbation amplitude € that triggers
transition from laminar to turbulent flow, scales like R~! as R — oo, where R
is the Reynolds number. Some numerical results also indicate that scaling in
plane Couette-like flows and models (e.g. Eckhardt and Mersmann, 1999).
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The concept of transition threshold was introduced by Trefethen et al.
(1993) who conjectured that € ~ R* with a < —1, strictly. Their argument
rests on linear transient algebraic growth of some perturbations before expo-
nential viscous decay, i.e. a behavior of the form € t ¢ /% where € is the initial
perturbation amplitude and ¢ is time. Such perturbations grow to a maximum
amplitude of order € R at a time of order R before the final viscous decay. A
simple scaling argument balancing the quadratic nonlinear interaction (since
the Navier—Stokes nonlinearity is quadratic) of maximally amplified distur-
bances with the linear viscous decay of the original disturbance then suggests

a transition threshold exponent a = —3,
2, € -3
(eR)” ~ = e~ R . (D)
R
On the other hand, the balance
@2~ ¢ = e~R"! @)
R )
suggests that a = —1 would correspond to a nonlinear transition where linear

transient growth does not play a role. Furthermore, the linear transient growth,
which in shear flows primarily results from the redistribution of streamwise
velocity by streamwise rolls, is accompanied by a mean shear reduction of
order (¢R)? (Waleffe, 1995a, 1995b, 1997; Reddy et al., 1998). Therefore,
for € ~ R~!, that mean shear reduction would invalidate linear theory, since
the latter assumes that the mean shear is fixed at its laminar value. Hence,
the understated importance of the restriction a < —1, strictly, in the original
conjecture.

A lower bound on the transition threshold was derived by Kreis et al. (1994).
That lower bound clearly involves transient growth but leads to the scaling ex-
ponent a = —21/4, much smaller even than the a = —3 suggested by the
simple scaling argument above (1). Numerical simulations suggest scaling ex-
ponents that are much closer to a = —1. Reddy et al. (1998) report a ~ —1
for streamwise vortices perturbations and a &~ —5/4 for oblique roll pertur-
bations, in plane Couette flow, and a =~ —7/4 for both type of perturbations
in plane Poiseuille flow. However, those exponents are deduced from small
and low Reynolds number ranges and may therefore not correspond to the true
asymptotic values. Chapman (2002) presents an asymptotic scaling analysis of
the two transition scenarios studied in Reddy et al. (1998)) and suggests that
the true scaling exponents are in fact a = —1 for both types of perturbations in
plane Couette flow, and a = —3/2 and —5/4 for the streamwise vortices and
oblique perturbations, respectively, in plane Poiseuille flow.

Chapman’s study contains a detailed asympotic analysis of the linear dy-
namics about the laminar flow using WKB methods.! However, the rest of
his formal analysis consists only of scaling estimates and is incomplete. His
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analysis of oblique perturbations calls on intricate initial disturbances with
relatively large vorticity of O(R2?/3) in plane Couette flow and O (R~ '"/1?)
in plane Poiseuille flow and specific nonlinear interactions to create channel-
size streamwise rolls.” His analysis of the streamwise vortex scenario leads to
plausible thresholds for streak instability, but those cannot be considered as
thresholds for transition since his formal analysis does not address feedback.?
Transition is not possible without feedback. The instability of a transient per-
turbation, e.g. the instability of transient streaks, is not sufficient for transition,
since that instability would necessarily extract energy from the streaks and
therefore could simply accelerate the return to the laminar flow. Transition
claims require demonstrating that disturbances are sustained.

The self-sustaining process (SSP) is a weakly nonlinear theory about a span-
wise varying shear flow that incorporates feedback. It is a synthesis of experi-
mental studies of coherent structures in the near-wall region of turbulent flows
(particularly the nicely illustrated work of Acarlar and Smith (1987)) and the-
oretical ideas due to Benney (1984). The main elements of the SSP (Figure 1)
are streamwise rolls of O(R~!) that redistribute the streamwise velocity to
create O(1) streaks whose streamwise undulation of O(R™') directly feeds
back onto the streamwise rolls (Waleffe, 1990, 1995a, b, 1997; Waleffe et al.,
1993). The validity and relevance of the SSP was established by Hamilton
et al. (1995) using Direct Numerical Simulations which strongly suggested
the existence of time-periodic solutions in plane Couette flow that have been
isolated by Kawahara and Kida (2001). The process and the proposed scalings
have served as the basis for a method to compute three-dimensional travel-
ing wave solutions of the Navier—Stokes equations. In that method (Waleffe,
1998), an artificial forcing of O (R~?) is introduced to sustain O (R ') stream-
wise rolls, these rolls redistribute the mean shear to create O (1) streaks. The
resulting new steady state, called the streaky flow, is linearly unstable because
of the strong spanwise inflections. This instability is subcritical in terms of
the artificial forcing because the direct nonlinear effect of the streak instabil-
ity is to feedback on the streamwise rolls. The nonlinear self-interaction of
an O(R ') streak eigenmode provides an O (R ?) nonlinear forcing that re-
places the artificial forcing to sustain the rolls against viscous decay. That
approach was used successfully in plane Couette and Poiseuille flow with both
free-slip and no-slip boundary conditions (Waleffe, 1998, 2001, 2003) and has
also been used to compute analogous traveling waves in pipe flow by Faisst
and Eckhardt (2003) and Wedin and Kerswell (2004). Itano and Toh (2001)
use a related shooting method where the starting point is a suitably selected x-
averaged flow (i.e. a streaky flow) obtained from a direct numerical simulation.
These works demonstrate that the SSP is robust and generic for shear flows.

The more recent and farther-reaching work on transient growth (e.g. Reddy
et al., 1998; Chapman, 2002) has moved closer to the self-sustaining process
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Figure 1.  The key elements of the Self-Sustaining Process with their presumed scalings.

theory. Those papers do not focus anymore on which laminar flow perturba-
tions lead to maximum transient energy growth but instead on those perturba-
tions that lead to the most unstable streaks.* However that line of work has
not yet addressed the feedback issue which is key for transition. Work on the
self-sustaining process includes the complete and exact representation of the
redistribution of streamwise velocity by streamwise rolls, including the mod-
ification of the mean shear, and seeks to construct streamwise rolls leading to
streaks whose spanwise inflectional instability leads directly to the regenera-
tion of the same streamwise rolls, thereby demonstrating self-sustenance and
transition potential.

Here, motivated by Hof, Juel and Mullin’s recent outstanding evidence that
a = —1 in pipe flow, we look back at the presumed scalings for the self-
sustaining process and provide numerical evidence that such scalings are as-
ymptotically exact as R — oo. We illustrate the ideas using a simple 4th
order model, follow with a sketch of an asymptotic theory and finally present
fully resolved calculations of the lower branch exact coherent states in plane
Couette flow. Our Cartesian coordinates follow the usual choice with x stream-
wise, y shearwise (wall-normal) and z spanwise, and corresponding velocity
components u, v and w, respectively.

2. SCALING IN A SIMPLE MODEL OF THE SSP

A simple model of the self-sustaining process was proposed in Waleffe (1995a,
1995b) and later “derived” from a systematic Galerkin projection of the
Navier—Stokes equations (Waleffe, 1997). The simplest non-trivial Galerkin
model consists of 8 modes, but that model is pathological as explained in
Waleffe (1997, sect. IV). An ad hoc reduction to a 4-mode model was made
in Waleffe (1997). Moehlis et al. (2004) have considered a 9-mode model
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that cures the pathological behavior of the 8-mode model, to some extent.
Their surgical modification of the 8-mode model is along the lines suggested in
Waleffe (1997, sect. IV), namely, to increase the resolution in the wall-normal
direction, but they do this in a very economical way that only adds one mode
and slightly modifies the shearwise structure of a few other modes. Their 9-
mode models illustrates some of the nonlinear dynamics of shear flow transi-
tion such as chaotic repellors and the fractal nature of the transition boundary.
However, from the point of view of the gross features of self-sustaining process
and the associated non-trivial fixed points, the original 4th order model is suf-
ficient and simpler.
The 4th order model® consists of the 4 real ODEs

K2 2
+ "M = % —o,UV +0, W?

( 2
K
+ “JU = o, MV —o, W?
dt
d |« 2
+ Vv = o, W

d «?
+ W = o, UW —0, VW —0o, MW
3)

In this model, the x2/R terms on the left-hand side represent viscous dissi-
pation, all o coefficients on the right-hand side are considered to be positive.
We do not need to consider specific numerical values for the «’s and o’s. The
right-hand side terms are organized in columns to emphasize that the nonlin-
ear terms are energy-conserving and to clearly identify the various parts of
the SSP. The first column «2 /R is the external forcing of the mean shear am-
plitude M(¢). The 2nd column correspond to the redistribution of the mean
shear by streamwise rolls of amplitude V(¢) to create streaks of amplitude
U (t). The flip-side of that redistribution is the Reynolds stress —o,, UV in the
M-equation. The third column represents the streak instability. W (z) is the
amplitude of a three-dimensional streak eigenmode, sinusoidal in the stream-
wise x-direction, that would grow exponentially on sufficiently large amplitude
(frozen) streaks U. This is accompanied by a Reynolds stress arising from the
nonlinear self-interaction of the streak eigenmode, —a,, W2, that destroys the
streaks as discussed in the introduction. The 4th column is the key nonlinear
feedback on the streamwise rolls, o, W2, that arises from the nonlinear self-
interaction of the streak eigenmode. The fifth column was overlooked in the
original write-up of the SSP model (Waleffe, 1995a, 1995b), since it is not es-
sential for the SSP. Its existence was revealed by the Galerkin derivation and it
turns out to be essential for the lower branch scaling discussed in this article, as
already discussed in Waleffe (1997, eqn. (23)). Its physical origin is simply the
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shearing by the mean of x-dependent disturbances. This shearing is important
and tied to the reduction of the mean shear by the streaks-rolls Reynolds stress.
Indeed if 0,U — 0,,M < 0, i.e. if the streaks are not sufficiently large com-
pared to the mean shear, then the streak instability (the exponential growth of
W) cannot occur. Note that the rolls V' also reduce the streak instability growth
rate, but they are typically much weaker than the streaks U and the mean shear
M.

Model (3) has a laminar fixed point (M, U, V, W) = (1, 0, 0, 0) that is lin-
early stable for all R, as in plane Couette flow. It can be shown in general,
i.e. for any «’s and o’s provided that all ¢’s are positive, that model (3) has
a critical Reynolds number R, > 0 above which two non-trivial fixed points
exist as long as 0,0,0, > 0. The complete derivation is sketched in Waleffe
(1997, sect. Il D); here we only state the asymptotic balance for the lower
branch fixed point. For large R, the lower branch fixed point (indicated by the
subscript £) corresponds to the balance

2

K 2
IZ’M@ ~ o —o, UV,
2
iy, o~ M,V
R 4 Oy My Vy 4)
2
K
2
1; Vg ~ Oy WZ
Oy Ug ~ Oy Mg
specifically,
1 o,/0
lim M, = <1, lim U, = n/%u > 0, 5)
R—00 K20’m2 R—o00 K20_m2
1+ u u
K202 K202
m-w m-w
. Opk? . Ok K2
lim (RV,) = “, lim (RW,) = v (6)
R—oc uOw R—00 0,0,0y

so the lower branch fixed point tends to a streaky flow, not to the laminar point
as R — oo, (My, Uy, Vo, Wy) = (M, U, 0,0) # (1,0,0,0). This is only
true if o,, # 0. Thus the key physical effect responsible for the R ! scaling of
streamwise rolls and streak eigenmode, and the need for O (1) streaks, is the
shearing of the x-dependent streak eigenmode by the mean shear.®

2.1 Transition threshold in the 4th order model

The transition threshold is the smallest distance to the stable manifold of the
lower branch coherent state.” Therefore we want to estimate the smallest initial
condition that will bring the system in the neighborhood of the lower branch
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fixed point. Our postulate is that we can obtain a good estimate of that thresh-
old from the lower branch coherent state combined with our mechanistic un-
derstanding of the self-sustaining process.

A look at the 4th order model (3) shows that W = 0 is an invariant man-
ifold. This follows from the fact that W represents the amplitude of the only
x-dependent 3D mode in that model. The streaks U and rolls V' correspond to
x-independent 2D modes and the mean shear M is a 1D mode with no stream-
wise or spanwise variation. Therefore this W = 0 invariant manifold directly
correspond to the 2D x-independent invariant manifold for the Navier—Stokes
equations. It is clear that the laminar fixed point is the global attractor in the
W = 0 invariant manifold, since V is not sustained and will decay viscously
back to zero, in which case the streamwise velocity redistribution ceases and
U — 0, M — 1. This is true also for the 2D invariant manifold in shear
flows, as first shown in Joseph and Tao (1963). Therefore, to trigger transition
in model (3), the initial conditions must be such that W (0) # 0. This is a first
key observation and constraint for transition.

Besides the need for W(0) # O, it is rather clear that an efficient way to
jumpstart the SSP is to start with streamwise rolls V (0) ~ V, = O(R™") with
V() > W) # 0and V(0) > V, since the rolls will suffer some viscous
decay while creating streaks. This is the strategy that has always been em-
ployed to study the SSP (e.g. Waleffe, 1995a, sect. 4.1; Waleffe, 1997, sect.
IT A) as well as to calculate self-sustained 3D traveling waves in the Navier—
Stokes equations by bifurcation from a streaky flow. Another good candidate
perturbation is to start with a W(0) ~ W, = O(R'). However such initial
condition is subjected to shearing by the mean (—o,, MW term) which de-
stroys W rapidly. Therefore we expect this type of perturbation to be much
less effective in triggering transition, requiring W (0) significantly larger than
W, although still scaling like R ! asymptotically as R — oo.

3. ASYMPTOTIC THEORY OF THE SSP

The original presumed scalings for the SSP was that streamwise rolls of
O(R™") create inflectionally unstable streaks of O(1), and that the nonlin-
ear self-interaction of O(R™!) streak eigenmode, sinusoidal in x, sustains the
rolls.

To formalize these scaling presumptions we begin with the postulate that
lower branch traveling wave states correspond to the following naive asymp-
totic scaling for each of the Cartesian velocity components and the pressure:

= uy + R 'ue?® + R Zune?? 4+ c.c.
= R 'vg + R 've? + R 2ve* +c.c.
= R 'wy + R 'we? + R 2we* +c.c.
= RZpy + R 'pie? + R Zpe* +c.c.

(7

S 8 e =
+ + + +
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where 6 = a(x — ct), ¢ = c(a, R) is a real phase velocity and c.c. stands for
complex conjugate. Every modal amplitude function, e.g. ug = uo(y, z; o, R)
is a 2D function of both y and z. The streamwise wavenumber o and the
Reynolds number R are the controlling parameters.

This asymptotic ansatz is very similar to that postulated by Benney (1984).
Benney’s original formulation was for time-dependent inviscid flow with an
amplitude parameter € in lieu of R~! and long time and space modulations,
T = e€t, X = ex. Benney and Chow (1989) later re-introduced the Reynolds
number, which requires the semi-implicit assumption that e = O(R ).

Substituting expansion (7) into the Navier—Stokes equations leads to the fol-
lowing coupled equations at lowest order:

Streaky flow
ou u
Vi =wvy,  +wo .+ F, ®)
ay 0z
First x-harmonic
(u —c)av‘+(v Vug)® = =V (pie)
0 9x 1 0 - P1 s (9)
V-vl = 0,

Streamwise rolls
Vi, = J (VAW Uy) +

02 . . 0? 02 By . (10)
Zayaz (vlvl — wlwl) + (8Z2 - 8y2) (vlwl + v]wl) ,

where W, (y, z) is the streamfunction for the streamwise rolls (0, vy, wg) with

8\110 8“IJO
vo(y,2) = . woe(y,2) = — , (11)

0z ay

J(A,B) = 0A/dy 0B/dz — 0A/dz 0B/dy is the usual Jacobian and
v, = e X + viy + wi2) is the first harmonic with X, § and Z the unit
vectors in the respective coordinate directions. The streaky flow equation (8)
contains the non-dimensionalized driving pressure gradient F;. For channel
(plane Poiseuille) flow, Fy = —2 with —1 < y < 1 and u((%1, z) = 0, while
Fy = 0 with ug(£1, z) = %1 for plane Couette. Equations (8), (9), (10) are
the equations for the lowest order terms in a Reynolds number expansion of
the modal amplitudes, e.g. for the uq, term in the expansion

1
uo(y,z:a, R) = ugo(y, z; ) + Rum(y, o)+ (12)

but we write u for brevity. The lowest order problem consists of three coupled
two-dimensional (y and z) problems (8), (9), (10).
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The lowest order contribution to the 2nd harmonic would arise at order R 2

v R .
(g —¢) 8x2 + (v2- Vug)t = =V (p2e®) =V - (0101

V-vz =0

(13)

where v, = €%’ (u,X + v,y + w,2) is the 2nd harmonic.

Equations (8), (9), (10) are the Navier—Stokes equivalent of the asymptotic
balance (4) for the lower branch of the 4th order model. Equation (8) corre-
sponds to the first two equations of that model, and to the advective redistri-
bution of the streamwise velocity by streamwise rolls to induce an essential
spanwise modulation. Equation (10) directly corresponds to the 3rd equation
in (4), with the streamwise rolls maintained by the quadratic self-interaction of
the streak eigenmode. Equations (9) correspond to the linearized equations —
if ug(y, z) was fixed — for the stability of the 2D streaky flow u((y, z) to a 3D
perturbation, vy, sinusoidal in x. Since we demand that ¢ be real, these equa-
tions correspond to the marginal inviscid stability of a pure streaky flow, just
as the 4th equation of (4). Note that equations (8) and (10) are viscously bal-
anced (formally corresponding to R = 1 in fact), while Equation (9) is inviscid,
with v; corresponding to a marginally stable mode, and requires only inviscid
boundary conditions. In a wall-bounded domain, this suggests that viscous
boundary layers of O(R!/?) will be required to satisfy the no-slip boundary
conditions. There is also the possibility that a critical layer will arise from the

up(y,z2) —c=90 (14)

singularity in the 1st harmonic equation (9). In two dimensions, linear critical
layers scale like R~'/? while nonlinear critical layers scale like €'/?> where € is
a measure of the disturbance amplitude (e.g. Maslowe, 1986). These scalings
are for small 2D perturbation of the 1D laminar shear flow. In our case, our
critical layer ug(y, z) — ¢ = 0 would be a warped surface, our perturbation
is 3D and its amplitude is directly tied to the Reynolds number as € = R™!.
Nonetheless, by analogy with 2D critical layers we can expect a warped critical
layer of thickness § with

e?=R1? <5 <RV (15)

Such critical and boundary layers seriously complicate the expansion, both
theoretically and computationally. Looking at the right-hand side of the 2nd
harmonic equation (13), the nonlinear forcing term arising from the the Ist
harmonic, V - (v;v,), could contribute at order R /3 or R~3/? instead of R 2
as postulated. This is because if the first harmonic has amplitude of order R !,
then its nonlinear self-interaction term, v,v;, would indeed be of order R 2,
but if a critical layer of thickness § is present, then the nonlinear forcing term
V - (vv;) could generate a 2nd harmonic of order 6 'R~2. For 8 as in (15)
this gives 2nd harmonic amplitudes between R /3 and R 3/2,
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4. NUMERICAL CONTINUATION OF LOWER
BRANCH STATES

Here we present fully-resolved numerical solutions of the Navier—Stokes equa-
tions that consist of lower branch ‘exact coherent structures’ in plane Couette
flow with no-slip boundary conditions. These particular solutions have ¢ = 0
by symmetry in a Galilean frame such that the average flow velocity is zero.
These solutions were obtained in two ways, (1) by homotopy from free-slip
to no-slip solutions (Waleffe, 2003), the free-slip solutions having been ob-
tained using the bifurcation from streaky flow approach (Waleffe, 1998), and
(2) by direct bifurcation from a streaky flow in the no-slip case. These no-
slip solutions belong to the same family as the solutions originally obtained by
Nagata (1990) by continuation of wavy Taylor vortices solutions in rotating
plane Couette flow.

4.1 Bifurcation from streaky flow in no-slip plane Couette

For the SSP approach of tracking solutions that bifurcate from a streaky flow,
we begin by adding an artificial forcing of the streamwise rolls to the Navier—
Stokes equations. The forcing is chosen to correspond to the slowest decaying
linear streamwise rolls appropriate to the shear layer. In the no-slip plane Cou-
ette case, these correspond to x-independent vertical velocity of the form

F 5(y) 10,

Vv, z) = cosyz =
> 2) R v, v R 0z

(16)
with
__cosBy coshyy

') cos 8 cosh y

(17
where 3, = max, [0(y)] and B is the smallest positive solution of j tan g +
ytanhy = 0. For y = 5/3, B ~ 2.604189715. The functions (17) solve the
Stokes eigenvalue problem (D? — y2)20 = A(D? — y?)0, with o = Db = 0
at y = x1, where D = d/dy. The streamwise rolls are normalized so that
max V(y,z) = F,/R where R is the Reynolds number and F, is an O(1)
forcing parameter. These are the same streamwise rolls as used in Waleffe
(1997). The free-slip rolls used in Waleffe (1998) have the same form and
scaling except that 0(y) = cosy/2 in that case.

In that formulation, the initial roll forcing must balance the viscous term in
the streamwise rolls equation (10). For v = V (y, z) as in (16)

(B> +y?)?cos By sinyz

Uny cosfB vy

and we therefore add the right-hand side of this equation as a forcing term to the
RHS of the streamwise rolls equation (10) (the R~ scaling of the forcing term

Vi (y,2) = F , (18)
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is implicit in that equation). In the free-slip case, the Jacobian J(V>W,, W),
corresponding to the nonlinear self-advection of the zeroth harmonic in (10)
vanishes identically. That nonlinear term does not vanish in the no-slip case
with the forcing (18), however it is small and has little effect. In the no-slip
case, that forcing generate rolls that are only approximately described by (16).
This is of no consequence, since the forcing is merely an educated guess for
the streamwise rolls.

The roll forcing sustains weak streamwise rolls that redistribute the stream-
wise velocity and the base state now consists of a two-dimensional, three-
component “streaky flow” [uq(y, z), R 'vg(y, ), R 'wo(y, z)] instead of the
one-dimensional, one-component laminar flow [U (y), 0, O]. That streaky flow
is linearly unstable and we can track the bifurcating solution from the marginal
stability point. The bifurcation is subcritical in term of the roll-forcing parame-
ter, confirming that the first-harmonic nonlinear self-interaction terms on the
RHS of (10) positively feedback on the rolls and take over the role of the ar-
tificial roll forcing. For that continuation of 3D solutions from the bifurcation
point of the streaky flow, F, is a dependent variable that must be computed and
we select

A, = R(ne @) (19)

as the new control parameter where (-) denotes an average over the domain
and 9 denotes real part. Hence, A, is the y-average of the («, 0) Fourier com-
ponent of the y-vorticity n. That control parameter is chosen because it is a
key component of the sinusoidal streak instability mode. Figure 2 shows the
resulting bifurcation diagrams for several (¢, y) and R. The key objective is
to obtain a 3D self-sustained solution at F, = 0. Once a solution has been ob-
tained, it can be continued in the self-sustained parameter space (¢, y, R) with
F, = 0. Details of the mathematical and numerical formulation can be found
in Waleffe (2003) and the resolution parameters quoted below correspond to
the numerical parameters [Lr, M7, N7] in that reference.

4.2 Continuation of lower branch solutions to high R

We pick the fundamental wavenumbers o = 1.14 and y = 2.505, correspond-
ing to spatial periods L, = 27/« and L, = 2m/y. These parameter values
follow from our earlier studies of the SSP and exact coherent states in plane
Couette flow. The value y = 5/3 & 1.67 was selected and ¢ ~ 1.14 ob-
tained by “annealing” studies of plane Couette turbulence in Hamilton et al.
(1995) that confirmed the validity of the SSP and suggested the existence of
a time-periodic solution for those parameter values at R = 400 extracted in
Kawahara and Kida (2001). A continuation study of 3D steady states in Wal-
effe (2002) found that these states exist only for &« < 1.08 when y = 1.67
and for 1.7 < y when @ = 1.14, at small Reynolds numbers < 400. In
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Figure 2. Bifurcation diagrams for no-slip streaky plane Couette flow with y = 1.67 (reso-

lution [9,21,9]). Vertical axis is Ay defined in (19) multiplied by R.

particular, 3D steady states were found to exist at R = 400 when o« = 1.14
for y = 1.5 x 1.67 = 2.505 and y = 2 x 1.67 = 3.34. The latter corre-
sponds to the 2nd z-harmonic in a box of fundamental spanwise wavenumber
y = 1.67, while the former is intermediate between the fundamental and the
2nd harmonic. We selected « = 1.14 and y = 2.505 for our initial lower
branch continuation to large Reynolds numbers but have also considered other
parameter values such as («, y) = (1.14, 2.5), (1.39,2.5) and (1, 2), all with
similar results.

Figure 3 visualizes the typical structure of the lower branch steady state at
high R. The streaks (visualized by the green isosurface of total streamwise
velocity u) appear completely straight, i.e. x-independent. The red isosur-
faces correspond to Q = 0.6max(Q) = 3.4610~% where Q = V?p/2 is the
2nd invariant of the velocity gradient tensor. Note that although the red Q-
isosurfaces are prominent in the figure, they correspond to very low values of
max Q, consistent with the presumption that rolls and streak undulation are of
O(R"). The yellow isosurface is u = 0 and this correspond to the critical
surface uy(y, z) — ¢ = 0, since ¢ = 0 by symmetry for these plane Couette
flow steady states and u =~ uy(y, z). It is remarkable how the Q isosurface
straddles that # = 0 surface, suggesting that it is indeed a critical layer.

Figure 4 shows the mean velocity profile (i.e. the x and z average streamwise
velocity) for the lower branch steady states for (¢, y) = (1.14,2.505) at R =
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u=[-0.32, 0, 0.32], Q=3.46 10™
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Figure 3. Isosurfaces u = —0.32 (green), 0 (yellow), 0.32 (cyan) and Q = v2 p/2 =
0.6max(Q) = 3.46 x 1074 (red) for (a, y, R) = (1.14,2.505, 6196), resolution [9, 75, 21].
Clockwise: Front, top and side views. Top and side show Q and u = —0.32 only.

400, 897 and 7050. Although the higher R profiles are closer to laminar they
do not seem to tend to the laminar flow as R — oo, in fact the profiles are very
weakly dependent on R, which is why we jump from R = 897 to 7050 in the
figures. The mean profiles for («, y) = (1,2) at R = 400, 867 and 7014 are
also shown.

Figure 5 shows the x-averaged, z-rms velocity fluctuation profiles, i.e. the
rms of the streaks, defined as the x-averaged streamwise velocity minus the
mean velocity, and of the streamwise rolls. The latter are scaled by a factor
of R. Those profiles show that the streaks appear to be converging to an O(1)
profile, while the rolls scale like R !. The z-rms velocity profiles for the 1st
harmonic, scaled by R, are shown in Figure 6. These R-compensated profiles
appear to show convergence, confirming the R~' scaling of the first harmonic.
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(e, ¥, R) = (1.14, 2.505, [400, 897, 7050]) (o, v, R) = (1, 2, [400, 867, 7014])
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Figure 4.  Mean velocity profiles for lower branch steady states in no-slip plane Couette.

Left: («, y) = (1.14,2.505) for R = 400, 897, 7050 (higher R closer but not converging to
laminar), resolution [13, 27, 13], [9, 45, 17] and [9, 75, 21], respectively. Right: («, y) = (1, 2)
for R = 400, 867, 7014.

Although, there are signs of boundary layers near the walls in the u; and w,
profiles, the most dramatic feature is the rapid rise of the profiles away from
the walls near y = 40.4. This roughly corresponds to the extreme y-locations
of the critical surface u((y, z) —c = 0 show in Figure 3. That critical surface is
very weakly dependent on the Reynolds number R as confirmed by the mean
and rms-streak profiles in Figures 4 and 5. This critical layer interpretation is
confirmed by the rms profiles of the 2nd harmonic shown in Figure 7. Those
profiles are scaled by R3/? and appear to be converging. The most dramatic
feature is that they are close to zero near the walls but then shoot up abruptly
near y = +0.4 again. This behavior, together with the apparent R—3/? scaling
instead of the naive R 2, strongly suggest that critical layer behavior is taking
place. Log-log plot of the peak rms values for the streamwise rolls, the 1st,
2nd and 3rd harmonics are shown in Figure 8 together with a lin-lin plot of
the peak rms streak amplitude. These plots provide a global visual confirma-
tion that the rolls and the first harmonic scale like R~'. The 2nd harmonic
appears to scale like R—3/% and the 3rd like R 2. This is in contrast to the R 2
and R3, respectively, in the naive expansion (7) and an indication that critical
and/or boundary layers are occuring. The earlier figures suggest the key im-
portance of the critical surface uo(y, z) — ¢ = 0. We have verified that R—3/2
and R 2 are better fits than R /3 and R7/3 for the 2nd and 3rd harmonic,
respectively. The bottom plots in Figure 8 show the peak rms streak amplitude
for («, y) = (1.14,2.505), (1.39,2.5), (1,2) and strongly suggest convergence
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Figure 5. z-RMS of x-averaged velocity fluctuation profiles. Top: streaks uqg(y, z) — u(y).
Bottom: rolls scaled by R, v solid, wg dash. Peak rms values decrease with increasing R.
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Figure 6.  z-RMS velocity profiles scaled by R for the 1st harmonic v;. Top: streamwise
velocity uj(y, z). Bottom: vy solid, wy dash. Peak scaled rms decreases for u but increases
for vy, wy as R increases.
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Figure 7. z-RMS velocity profiles scaled by R3/2 for the 2nd harmonic v,. Top: us(y, z).
Bottom: vy solid, wy dash. Peak scaled rms decreases with increasing R for all three compo-
nents.
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Figure 8.  Peak z-rms velocity fluctuation profiles vs. R. Top: 1st harmonic, streamwise rolls,
2nd and 3rd harmonics (highest to lowest curve) for (o, y) = (1.14, 2.505). Dashed lines: R
fits for v and rolls (vg, wo), R 3/ for vy and R 2 for v3. Bottom: streaks ug(y, z) — u(y)
for (¢, y) = (1.14, 2.505) (lowest curve), (1.39,2.5) (middle), (1,2) (top curve). Composite of
several resolutions, [9,75,21] for highest R.
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to a finite value confirming that streaks remain O (1) as R — oo. Other results
for these other (¢, y) are similar to those reported here for (1.14, 2.505).

S. CONCLUSIONS

We have continued lower branch exact coherent structures in no-slip plane
Couette flow to high Reynolds number, up to about 20 times higher than the
Reynolds number (= 320) where turbulence is first observed to occur. Our
results support earlier presumptions that the lower branch coherent states have
streaks of O(1) supported by streamwise rolls and a streak eigenmode of
O(R"). The numerical results show that the higher harmonics do not fol-
low the naive scaling where the n-th harmonic would scale like R ". There
is instead clear evidence for the importance of a critical layer determined by
uo(y, z) — ¢ = 0 where uy(y, z) is the x-averaged streamwise velocity and c
is the traveling velocity of the structure. This critical layer reduces the decay
rate of the higher harmonics. The 2nd harmonic appears to decay like R~3/2
and the 3rd harmonic like R~2. Nonetheless, this suggests that the various har-
monics separate as R — oo and that the limiting state of the flow is given by a
“mean flow-first harmonic theory” similar to that proposed by Benney (1984).
In other words, the self-sustaining process (Figure 1) becomes exact for the
lower branch states as R — oo. The flow retains an essential spanwise varia-
tion, sustained by ever weaker rolls and a single x-harmonic eigenmode of the
streaky flow. The streaky flow never connects to the laminar flow, not even at
infinity.

On the transition threshold question, we expect that all lower branch non-
trivial states based on the self-sustaining process will have the same asymptotic
scaling: O(1) streaks supported by O(R ') rolls and streak eigenmode. This
suggests that the best perturbations to trigger turbulence probably consist of
channel size O(R ') streamwise rolls of streamwise extent of the order of a
few channel sizes as well to trigger a first harmonic of the proper wavelength
and strength (Figure 3). The relevant length scale £ is the full width in plane
Couette, the half-width in plane Poiseuille and the radius in pipe flow, i.e.
the width of the laminar shear layer. The jet perturbation used in Hof et al.
(2003) precisely generates a disturbance of that form, i.e. a pair of counter-
rotating vortices whose axes are aligned in the streamwise direction, provided
the duration of the jet is at least of the order of the convective time scale £/U.
The SSP suggests that very short jets will not be very effective at triggering
turbulence, since they would trigger «’s that are too large and would not set
up sufficiently long streaks. On the other hand, the SSP suggests there will
be little sensitivity to the length of the pulse once it is longer than a few £’s,
since sufficiently long rolls will have been excited leading to sufficiently long
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naturally unstable streaks. This is entirely consistent with the results of Hof
et al. (2003, fig. 3).
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NOTES

1. For transient growth, the essence of the WKB results can be obtained by considering the linear
evolution of Kelvin modes, i.e. Fourier modes with time-dependent wavevectors, on an unbounded plane
Couette flow.

2. Chapman assumes the predominance of nonlinear interactions between oblique streaks (rapidly os-
cillating in y) that would generate large scale streamwise rolls and between oblique streaks and stream-
wise streaks to sustain the oblique rolls (this is more clearly illustrated by his “toy model” (2.6)-(2.9) and
his figures 19 and 20). This is an excitation of subharmonic-type where oblique modes with horizon-
tal wavenumbers (f«, y) would create a pair of streamwise rolls with spanwise wavenumber (0, 2y). In
Chapman’s oblique transition scenario, the oblique streaks are induced by velocity perturbations of O (R
and O(R—3/%), in Couette and Poiseuille flows, respectively, that rapidly oscillate in y on a R™1/3 length-
scale. Such perturbations correspond to rather intricate initial perturbations with vorticity of O(R™2/3) and
O(R™/12) ‘much larger than the corresponding vorticity perturbations for the streamwise vortex scenario.

3. Chapman’s “toy model” does incorporate feedback but his formal asymptotic study merely estimates
the size of streamwise streaks necessary to perturb the laminar flow eigenvalues at lowest order, assuming
but not demonstrating that this would lead to streak instability. His entire analysis ignores the modification
of the mean shear. His nonlinear system (3.6), (3.12) is not complete since it lacks the equation for the mean
flow. As recalled in the introduction, the mean shear perturbation is of order (€ R)? which is of order unity
for a = —1 and these mean flow modifications play an important role in the streak instability, at least in
plane Couette flow (as discussed in Waleffe, 1995a, 1995b, 1997; Reddy et al., 1998).

4. Chapman’s Couette analysis focuses on streamwise rolls of amplitude € ~ R, as in the SSP
(Figure 1), but that implies an order 1 reduction of the mean shear that invalidates linear theory about the
laminar flow. Chapman’s Poiseuille analysis suggests that large scale streamwise rolls of O(R™3/2) are the
most efficient to lead to streak instability. That threshold corresponds to odd-in-y streamwise rolls, that do
not correspond to the largest transient growth. Although instability of the resulting O(R™Y/2) streaks is
plausible, it has not been shown that instability of such streaks would lead to some feedback able to trigger
transition.

5. The 4th order model is derived for a sinusoidal shear flow (sinzy/2, 0,0) maintained by a body
force. M(t) represents the amplitude of that shear flow, U(¢) is the amplitude of a pure streak mode of
the form (cos yz, 0, 0) whose z-average vanishes, V(¢) is the amplitude of a streamwise roll of the form
(0, y cos By cos yz, Bsin By sinyz) while W(¢) is the amplitude of a streak eigenmode sinusoidal in x,
but whose minimum representation involves 5 Stokes modes (see Waleffe, 1997, eqns. 8, 9 and sect. III,
Q). In the context of Section 3 and Equations (8), (9) and (10), M (¢) would represent a measure of the
mean shear (i.e. y-derivative of the x and z averaged streamwise velocity, u*%, which is identical to uq?,
the z-average of u((y, z)) in a neighborhood of the critical layer uo(y,z) — ¢ = 0 (not near the no-slip
walls), U (t) would represent the amplitude of the streaks (i.e. of ug(y, z) — ug*), V(t) would represent the
amplitude of the unscaled rolls (i.e. R~! Yo(y, z)) and W (¢) the amplitude of the unscaled streak eigenmode
(RN (x, y,2) + c.c).
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6. Since the Navier—Stokes numerical results indicate the presence of a critical layer, it is interesting
to note that the scaling of the lower branch fixed point in the 4th order model would not change even if the
dec?y rate of W was order R—1/3, typical of linear critical layers and shear-induced diffusion, instead of
R

7. The lower branch coherent state is a saddle fixed point with many stable but a few unstable direc-
tions. Its ‘stable’ manifold is the set of all initial conditions that will end up at the fixed point in forward
time, but that manifold is unstable in the sense that initial conditions near but not on the ‘stable’ manifold
will move away from that manifold.
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